

Different types of data for predicting genomic EBV

Mogens Sandø Lund

How to increase genomic reliabilities

Increase reference population

- Join populations of same breed
- Cows in reference population
- Across breeds predictions

Increase LD information

- Haplotype models
- Sequence information

How to increase genomic reliabilities

- Genotyping and sequencing technologies
 - 7K, 9K, 50K, 700K
 - WGS

Statistical models

- GBLUP/SNP-BLUP
- Haplotype models
- Bayesian VSM
- One step

Take home message

- Combination of genomic technologies
- Need multiple models

SNP-chip vs. WGS

• SNP chip

- Sample of SNP (higher minor allele frequency)
- Limited linkage disequilibrium depending on number of SNP
- High informativity for imputation
- Opportunity for custum made chip

• Sequence

- Contains most variants (>20 mio SNP, indels, CNVs, etc)
- Causative variants included (no bias in selection of SNP)
- High linkage disequilibrium between markers and causative variants
- Sequence GWAS improve associations substantially (Goutam)

Include sequence SNPs (QTL regions, general) Or few potential QTN Bayesian models are needed Haplotype models

Increased LD

4 5 4

Bull reference

• 50K

• Capture most genetic variance within breed

•700K

- Haplotype models
- Prediction over generations (and breeds)

Sequence data

- Causative variants
- Prediction over generations and breeds

9K for reference cows

- More cows in reference (cheaper)
- High imputation accuracy
- Add many potential causative variants
 - Non-additive effects
 - Testing for causative variants
- Better predictions across breeds

• GBLUP → infinitesimal model

- No improvement from sequence data
- Needed for large scale predictions
- Can be modified to prioritise specific SNPs

BayesianVS models → causality model

- Select causal SNP or few SNP in high LD
- Needed to extract prior knowledge for GBLUP/SNP-BLUP

Combining genotyping and moddeling

